Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Jun Hyeok Jeong 2 Articles
A Study on Graphite Powder Compaction Behaviors Using the Discrete Element Method
Jun Hyeok Jeong, Jinnil Choi
J Powder Mater. 2021;28(1):1-6.   Published online February 1, 2021
DOI: https://doi.org/10.4150/KPMI.2021.28.1.1
  • 111 View
  • 4 Download
  • 1 Citations
AbstractAbstract PDF

Accurate and effective powder compaction analyses are performed for brittle materials such as graphite, utilized as a solid lubricant, by using the discrete element method (DEM). The reliability of the DEM analysis is confirmed by comparing the results of graphite powder compaction analyses using the DEM particle bonding contact model and particle non-bonding contact model with those from the powder compaction experiment under the same conditions. To improve the characteristics, the parameters influencing the compaction properties of the metal-graphite mixtures are explored. The compressibility increases as the size distribution of the graphite powder increases, where the shape of the graphite particles is uniform. The improved compaction characteristics of the metal-graphite (bonding model) mixtures are further verified by the stress transmission and compressive force distribution between the top and bottom punches. It is confirmed that the application of graphite (bonding model) powders resulted in improved stress transmission and compressive force distribution of 24% and 85%, respectively.

Citations

Citations to this article as recorded by  
  • Effects of solid graphite lubricants for powder compaction
    Jun Hyeok Jeong, Jinnil Choi
    Powder Metallurgy.2021; 64(3): 241.     CrossRef
Study on the Compaction Properties of Fe-Si-Al-Graphite Powder Mixtures
Jun Hyeok Jeong, Jinnil Choi
J Powder Mater. 2020;27(4):300-304.   Published online August 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.4.300
  • 25 View
  • 1 Download
AbstractAbstract PDF

In this paper, a durability study is presented to enhance the mechanical properties of an Fe-Si-Al powderbased magnetic core, through the addition of graphite. The compressive properties of Fe-Si-Al-graphite powder mixtures are explored using discrete element method (DEM), and a powder compaction experiment is performed under identical conditions to verify the reliability of the DEM analysis. Important parameters for powder compaction of Fe-Si-Algraphite powder mixtures are identified. The compressibility of the powders is observed to increase as the amount of graphite mixture increases and as the size of the graphite powders decreases. In addition, the compaction properties of the Fe-Si-Al-graphite powder mixtures are further explored by analyzing the transmissibility of stress between the top and bottom punches as well as the distribution of the compressive force. The application of graphite powders is confirmed to result in improved stress transmission and compressive force distribution, by 24% and 51%, respectively.


Journal of Powder Materials : Journal of Powder Materials